GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models
نویسندگان
چکیده
This paper proposes a novel surrogate-model-based multiobjective evolutionary algorithm called Differential Evolution for Multiobjective Optimization Based on Gaussian Process Models (GP-DEMO). The algorithm is based on the newly defined relations for comparing solutions under uncertainty. These relations minimize the possibility of wrongly performed comparisons of solutions due to inaccurate surrogate model approximations. The GP-DEMO algorithm was tested on several benchmark problems and two computationally expensive real-world problems. To be able to assess the results we compared them with another surrogate-model-based algorithm called Generational Evolution Control (GEC) and with the Differential Evolution for Multiobjective Optimization (DEMO). The quality of the results obtained with GP-DEMO was similar to the results obtained with DEMO, but with significantly fewer exactly evaluated solutions during the optimization process. The quality of the results obtained with GEC was lower compared to the quality gained with GP-DEMO and DEMO, mainly due to wrongly performed comparisons of the inaccurately approximated solutions.
منابع مشابه
Evolutionary Multiobjective Optimization Based on Gaussian Process Modeling
Multiobjective optimization is the process of simultaneously optimizing two or more conflicting objectives and is used for solving real-world optimization problems in various fields, from product design to process optimization. One of the most effective ways of solving problems with multiple objectives is to use multiobjective evolutionary algorithms (MOEAs). MOEAs draw inspiration from adaptat...
متن کاملXergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system
Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...
متن کاملDEMO: Differential Evolution for Multiobjective Optimization
Differential Evolution (DE) is a simple but powerful evolutionary optimization algorithm with many successful applications. In this paper we propose Differential Evolution for Multiobjective Optimization (DEMO) – a new approach to multiobjective optimization based on DE. DEMO combines the advantages of DE with the mechanisms of Paretobased ranking and crowding distance sorting, used by state-of...
متن کاملDifferential Evolution versus Genetic Algorithms in Multiobjective Optimization
This paper presents a comprehensive comparison between the performance of state-of-the-art genetic algorithms NSGA-II, SPEA2 and IBEA and their differential evolution based variants DEMO, DEMO and DEMO. Experimental results on 16 numerical multiobjective test problems show that on the majority of problems, the algorithms based on differential evolution perform significantly better than the corr...
متن کاملOptimization of Gaussian Process Models with Evolutionary Algorithms
Gaussian process (GP) models are non-parametric, blackbox models that represent a new method for system identification. The optimization of GP models, due to their probabilistic nature, is based on maximization of the probability of the model. This probability can be calculated by the marginal likelihood. Commonly used approaches for maximizing the marginal likelihood of GP models are the deter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 243 شماره
صفحات -
تاریخ انتشار 2015